Tri farebné spektrá
Ľudské oko je sofistikovaný orgán, ktorý sa prispôsobuje dostupnému svetlu. Táto schopnosť prispôsobiť sa nám umožňuje vidieť prekvapivo dobre v noci so svetlom len z mesiaca a hviezd. Použitie správnej farby svetla verejného osvetlenia môže zabezpečiť lepšiu viditeľnosť.
Po prvýkrát je možné vyrobiť svetlo, ktoré zužitkuje spôsob, akým ľudské oko vidí v noci. Holandský výrobca Innolumis Public Lighting prináša jedinečnú RGB (z angl. R-red, G-green, B-blue) LED technológiu bez fosforu alebo iných prvkov, ktoré by zaťažovali životné prostredie. Základom koncepcie je fakt, že ľudské oko vníma rôzne farebné spektrá pri rôznej intenzite svetla. Svetlo je dokonale prispôsobené potrebám a citlivosti ľudského oka pri večernom a nočnom videní. Nemalým benefitom pre firmy i prírodu je aj zníženie emisií CO2.
Svetelnými zdrojmi v LED svietidlách sú červené, zelené a modré LED diódy. Pri tomto RGB koncepte je optimálne svetelné spektrum vytvorené tak, aby zaručilo vynikajúce podmienky pre ľudské oko, a to všetko pri nízkej spotrebe elektrickej energie.
Ale ako môžeme brať do úvahy biologický účinok, ktorý nemožno merať tradičnými zariadeniami na meranie svetla? Tým, že sa pozrieme na S/P pomer (pomer medzi skotopickou a fotopickou krivkou), ktorý ukáže, do akej miery svetelné zdroje vyžarujú vlnové dĺžky svetla, na ktoré sú naše oči zvlášť citlivé v tme.
Ako fungujú naše oči
Človek má vynikajúce denné videnie, ale naše oči sú tiež prekvapivo efektívne v tme. To preto, že máme dva druhy svetlocitlivých buniek v očiach: tyčinky a čapíky. Čapíky sa nachádzajú prevažne v centre našej sietnice, zatiaľ čo zvyšok je prevažne tvorený z tyčiniek. Čapíky sú využívané v jasnom svetle (fotopické úrovne svetla), počas dňa a takmer vo všetkých osvetlených miestnostiach. Tyčinky fungujú len vo veľmi tmavých situáciách (skotopické úrovne svetla), ako napríklad v noci. Tyčinky sú teda oveľa citlivejšie na svetlo ako čapíky, a preto vďaka nim môžeme ešte rozlišovať tvary a kontrast dokonca v takmer úplnej tme.
Pri prechode medzi svetlom a tmou prenášajú informácie čapíky aj tyčinky. Tieto úrovne svetla sú nazývané mezopický rozsah (súmrak). Počas dňa, kedy využívame naše čapíky, je náš zrak najlepší v žltom svetle (fotopická krivka), ale v noci sa citlivosť nášho videnia presúva k zelenému a modrému svetlu (skotopická krivka), vtedy sú naše tyčinky najaktívnejšie.
Viditeľnosť za súmraku
Intenzita svetla, ktorá je k dispozícii z väčšiny verejného osvetlenia je v mezopickom rozsahu (šero). Ľudia kráčajúci po uliciach osvetlených verejným osvetlením teda používajú aj čapíky aj tyčinky. Väčšina konvenčného pouličného osvetlenia je oranžovej farby, ktorá stimuluje čapíky, ale nie tyčinky. Tyčinky sú síce aktívne, ale nie efektívne stimulované. Pouličné osvetlenie obsahujúce aj zelené a modré svetlo nám umožní lepšie rozoznať kontrast, keďže naše tyčinky sú najcitlivejšie na tieto farby.
Čapíky v našich očiach nám umožňujú vidieť počas dňa, tyčinky nám umožňujú vidieť v noci. Počas súmraku používame aj čapíky, aj tyčinky.
Ako dobre vidíme za súmraku teda nezávisí len na intenzite svetla, ale aj na svetelnom spektre. Toto chápanie mezopického videnia vôbec nie je nové. V roku 1819 Jan Evangelista Purkyně zistil, že citlivosť našich tyčiniek vrcholí na inej frekvencii ako u čapíkov. Uplatnenie LED v pouličnom osvetlení ťaží z týchto poznatkov v praktickom zmysle slova. Je možné vyrobiť svetlo špecifickej vlnovej dĺžky bez straty energie.
Čo je to S/P pomer?
Je zaujímavé vedieť, do akej miery zdroj svetla účinne stimuluje tyčinky. Existuje špeciálny pomer, ktorý vyjadruje tieto informácie: S/P pomer. S/P pomer je definovaný ako pomer medzi modro-zeleným svetlom (skotopickým), čiže nočným videním, a zeleno-žltým svetlom (fotopickým), čiže denným videním. Čím väčší je podiel modro-zeleného svetla, tým väčšie je toto číslo. Svetelné zdroje s vysokým S/P pomerom nám umožňujú dobre vidieť, aj keď je intenzita svetla nízka. Niekoľko čísiel pre objasnenie tohto konceptu: denné svetlo má vysoký S/P pomer = 2,47, zatiaľ čo sodíková výbojka má veľmi nízky S/P pomer = 0,23.
Vplyv S/P pomeru závisí na intenzite svetla. Ak sa zníži intenzita svetla, viac využívame naše tyčinky a menej naše čapíky. Platí to aj naopak: čím vyššia intenzita svetla, tým menší vplyv má S/P pomer, keďže čapíky sú aktívnejšie, keď majú viac svetla. Po prekročení istej intenzity svetla tyčinky sotva prispievajú ku kvalite nášho videnia. Zatiaľ neexistuje žiadny vedecký konsenzus o presnej hranici, nad ktorou S/P pomer už nemá vplyv. Nálezy z praxe ale ukazujú, že mezopické videnie človeka je aktívne takmer pri všetkých druhoch verejného osvetlenia.
Meranie osvetlenia
Komerčne dostupné fotometrické zariadenia určujú hodnoty luxov meraním všetkých svetelných frekvencií a ich vážením pozdĺž fotopickej krivky. Skotopická krivka teda nie je v meraní zahrnutá. Svietidlá s vysokým S/P pomerom poskytujú lepšiu viditeľnosť pri rovnakých hodnotách luxov. Stretávame sa tu s problémom z hľadiska výpočtov pre verejné osvetlenie, keďže výpočty sú vykonané len na základe lux hodnôt. Toto môže mať za následok viac vyžarovaného svetla, než je v praxi potrebné, keďže použijeme svetelné zdroje s vysokým S/P pomerom.
Lepším riešením je zarátanie spektrálneho rozloženia svetelných zdrojov vo výpočtoch osvetlenia. S/P pomer je vynikajúci nástroj, ktorý nám môže byť nápomocný. Existujú vedecké publikácie, ktoré predkladajú návrhy, ako môžeme S/P pomer využiť pre zakalkulovanie svetelného spektra do svetelných výpočtov.
Príkladmi sú Unified system of photometry (Rea et al, 2004) a ASSIST report (LRC, 2009). Tieto publikácie prezentujú korekčné faktory založené na S/P pomere. Tento spôsob výpočtu sa nazýva unifikovaná svietivosť (orig. Unified Luminance).
Unifikovaná svietivosť v praxi
Unifikovaná svietivosť je systém, ktorý umožňuje, aby bol S/P pomer svetelného zdroja zahrnutý do nameraných fotopických hodnôt svetla. Tento proces pozostáva z troch krokov:
- Stanovte úroveň viditeľnosti potrebnú pre určitú situáciu a úlohu: napríklad trieda S5 pouličného osvetlenia s Em 3 lux, Uh 0,2.
- Zahrňte viditeľnosť do intenzity osvetlenia pomocou metódy unifikovanej svietivosti. Nájdite S/P pomery rôznych svetelných zdrojov, o ktorých uvažujete v dokumentácii výrobcu. Pre výpočet unifikovanej svietivosti dostaneme nasledovné výsledky Em:
SOX (S/P pomer 0.23) SON T (S/P pomer 0.62) Lumis-LED (S/P pomer 3.2) 0,88 lux 2 lux 5 lux - Vyberte si vhodný zdroj svetla pre oblasť, ktorá má byť osvetlená.
Tento výsledok poskytuje lepšiu informáciu o skutočnej viditeľnosti, ktorú môžete dosiahnuť v praxi v danej lokalite. To znamená, že požadovanú viditeľnosť možno dosiahnuť s menšou spotrebou elektrickej energie.
LED osvetlenie je možné využiť ako osvetlenie obytných štvrtí, parkov, parkovísk či ciest. Rovnako však aj oblastí, kde je nevyhnutné obmedziť svetelné znečistenie na minimum, napríklad v prírode a na vidieku. Naviac, farebné spektrum je vyladené pre ľudské oko, a dokonca aj pre bezpečnostné kamery. Obraz z kamery získava vhodný kontrast a zobrazuje farby omnoho reálnejšie ako pri bežnom osvetlení sodíkovými výbojkami.
Parkovisko osvetlené svietidlami SON T vs. parkovisko osvetlené svietidlami Lumis-LED.
Nové LED osvetlenie verejných priestorov umožňuje presný výber farieb potrebných pre vytvorenie optimálnej viditeľnosti tak, aby sa šetrila energia. Farebné kombinácie umožňujú, aby bolo spektrálne rozloženie svetelných zdrojov relevantným faktorom z hľadiska výpočtov svietivosti.
Chceli by ste, aby vaše výpočty zahŕňali spektrálnu distribúciu svetla? Prosím, neváhajte nás kontaktovať.